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Abstract. The Sun’s spectrum is linearly polarized by coherent scattering processes. Here we develop the theory for the forma-
tion of the polarized continuum, identify the relevant physical mechanisms, and clarify their relative roles. The polarized pho-
tons are produced by scattering at neutral hydrogen in its ground state (Lyman scattering), and to a smaller degree by scattering
at free electrons (Thomson scattering). The polarized photons are diluted by the unpolarized photons from the H− opacity and
radiative absorption from the Balmer bound-bound and bound-free transitions. Due to pressure broadening of the Balmer lines
from the statistical Stark effect the polarized Balmer jump is shifted from the series limit to substantially longer wavelengths. In
the second part of the paper the Atlas of the Second Solar Spectrum that covers 3161−6995 Å for disk position µ = 0.1 (where µ
is the cosine of the heliocentric angle) is used to extract the empirical values of the continuum polarization with the help of a
model for the behavior of the depolarizing lines. The empirically determined continuum polarization lies systematically lower
than the values that have been predicted for λ > 4000 Å from radiative-transfer modelling. The Balmer jump is found to be
shifted as expected from pressure-broadening theory. Through scaling of the relative center-to-limb variations obtained from
radiative-transfer theory with the empirically determined values (valid for µ = 0.1) we finally obtain the semi-empirical function
that describes the variation of the continuum polarization with both wavelength and disk position µ. The empirically determined
continuum polarization can be used to constrain model atmospheres as well as to fix the zero point of the polarization scale in
observations of the scattering polarization and the Hanle effect.

Key words. polarization – scattering – Sun: photosphere – atomic processes – techniques: polarimetric –
radiation mechanisms: general

1. Introduction

The Sun’s spectrum is linearly polarized by coherent scattering
processes. This polarization is largest near the solar limb due
to the more favorable scattering geometry there, but systematic
exploration of the scattering polarization has only become pos-
sible during the last decade with the availability of sufficiently
sensitive polarimetric instrumentation (Povel 1995). The polar-
ized spectrum turns out to be as richly structured as the un-
polarized intensity spectrum, but since the appearance of the
polarized structures and their physical origins are very differ-
ent from the structures in the intensity spectrum, we are actu-
ally dealing with a new and complementary spectrum of the
Sun. The polarization spectrum formed by coherent scattering
has therefore been called the “Second Solar Spectrum” (Ivanov
1991; Stenflo & Keller 1997).

The Second Solar Spectrum is characterized by a polar-
ized continuous background, on which a rich variety of both
intrinsically polarizing and depolarizing lines are superposed.
While the depolarizing lines have the appearance of “absorp-
tion” lines, the polarizing lines look like “emission” lines.
Many lines however belong to an intermediate category if they
are only weakly polarizing, or if their line polarization is par-
tially depolarized by magnetic fields via the Hanle effect. The

appearance of the Second Solar Spectrum actually varies with
the phase of the solar cycle, since the Hanle effect depolariza-
tion is more pronounced at activity maximum due to the larger
amounts of hidden magnetic flux in the Sun’s atmosphere (cf.
Berdyugina et al. 2002). To properly interpret the line polar-
ization and the Hanle effect one needs to know the level of the
continuum polarization background and understand how this
background is formed (cf. Stenflo et al. 1998).

Unfortunately the level of the continuous polarization can-
not presently be determined as precisely as the relative polar-
ization variations in the spectrum (for which a polarimetric
precision of 10−5 is routinely achieved). Slight asymmetries
in the bidirectional charge shifts within the demodulating
ZIMPOL detector and instrumental polarization cause zero-
point offsets of the polarization scale. These effects can be cal-
ibrated, but currently not to the same polarimetric precision as
that of the relative polarization scale. For practical purposes the
zero point offset therefore has to be treated as an unknown free
parameter, while the relative variations are well determined. If
the level of the continuous polarization were known from other
investigations, then this knowledge could be applied to fix the
zero point of the polarization scale for any polarimetric record-
ing (that includes a portion of the continuum). The present pa-
per aims at finding the functional dependence of the continuum
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polarization with respect to both wavelength and disk position
(represented by µ, the cosine of the heliocentric angle).

Various attempts were made in the 1970s to measure the
continuum polarization and its center-to-limb variation (Leroy
1972; Mickey & Orral 1974; Wiehr 1975). They have been re-
viewed by Leroy (1977). Although these broad-band and non-
imaging observations allowed a general verification of theoret-
ical concepts for the origin of the continuum polarization that
had been developed in the pioneering works of Débarbat et al.
(1970) and Dumont & Pecker (1971), they are not of sufficient
accuracy, wavelength coverage and resolution to allow a good
quantitative comparison with detailed radiative-transfer mod-
elling. Such modelling has provided us with theoretical val-
ues for the continuum polarization over the wavelength range
4000−8000 Å (Fluri & Stenflo 1999), but the theory has not
been applied below 4000 Å. The UV is the most interesting
wavelength region, since the continuum polarization increases
steeply with decreasing wavelength, and there is interesting
physics occuring around the Balmer jump.

With the availability of the new Atlas of the Second Solar
Spectrum, which covers the wavelength range 3161–6995 Å in
three volumes (Gandorfer 2000, 2002, 2004), we now have a
comprehensive data set with which we may in principle extract
the values for the continuum polarization. Since however the
zero point of the polarization scale is unknown in the Atlas,
the extraction procedure needs to make use of a model for the
behavior of the depolarizing lines. A similar approach was ap-
plied to the first survey of the Second Solar Spectrum more
than two decades ago (Stenflo et al. 1983a,b), but the polari-
metric accuracy at that time did not allow the scale of the con-
tinuum polarization to be determined with much confidence, in
contrast to the present situation.

The present data set covers a wide wavelength range, where
many different physical mechanisms come into play. As pre-
vious theoretical work (Débarbat et al. 1970; Fluri & Stenflo
1999) has focused on the radiative-transfer aspects of the prob-
lem, we find a need to elucidate the underlying physics in a
more systematic and transparent way. Therefore we develop in
the first part of the paper the theory that governs the formation
of the polarized continuum, identify the various contributing
mechanisms, and clarify their respective roles. In the second
part we extract the empirical values of the continuum polariza-
tion from the Atlas data and compare them with the theoretical
predictions, to examine to what extent some physics is miss-
ing. The empirical values are finally connected with radiative-
transfer modelling to obtain the semi-empirical function that
gives the continuum polarization for all wavelengths and disk
positions µ.

2. Theoretical formulation

2.1. Classical theory

In the classical picture the atoms are treated as radiatively
damped classical oscillators with resonant frequency ω0 and
damping rate γ, governed by equation

d2xq

dt2
+ γ

dxq

dt
+ ω2

0 xq = − e
m

E′q, (1)

where E′q is the electric field of the incident radiation. q = 0,±1
is the index for the three vector components. The orthogo-
nal basis of choice is not Cartesian coordinates but complex
spherical vectors, representing one linear polarization (q = 0,
the π component), and two circular polarizations (q = ±1,
the σ components). Only with this choice of basis vectors do
the three component equations stay uncoupled when a mag-
netic field is introduced (although in the following we will only
be dealing with the zero-field case). These vector components
correspond to the magnetic substates in the quantized picture.

The oscillating electric vector E′q induces an oscillating
dipole moment dq per unit volume. The stationary oscillatory
solution of Eq. (1) is

dq = −Nexq = ε0 E′q (n2
q − 1), (2)

where N is the number of oscillators per unit volume, −e the
electron charge, ε0 the permeability of vacuum, and nq the com-
ponent of the refractive index for the medium of oscillators. In
the non-magnetic case nq = n, i.e., independent of q. While
time-dependent theory is needed to treat line-broadening ef-
fects (cf. Bommier & Stenflo 1999), it is sufficient here to limit
the discussion to the stationary solutions.

The non-magnetic refractive index n is given by

n2 − 1 =
ω2

A

ω2
0 − ω2 − i γω

, (3)

where ω is the frequency of the incident radiation, and

ωA =

√
e2N
ε0 m

(4)

would be the standard plasma frequency if N were equal to Ne,
the electron density. Instead of an ordinary plasma of non-
resonant free electrons, we are here dealing with a “plasma”
of resonant oscillators.

The excited oscillators emit dipole radiation. From the clas-
sical expression for dipole radiation one can derive an expres-
sion for the relation between dq and the electric vector Eq of the
emitted radiation. Together with Eq. (2) one then gets a relation
between the exciting electric field E′q and the scattered electric
field Eq, which, when transformed to a basis of linear polariza-
tion vectors (which is the natural basis for measuring devices),
can be expressed in terms of the Jones scattering matrix. From
the tensor product of two Jones scattering matrices one obtains
the Mueller scattering matrix that describes how the incident
Stokes vector I′ is transformed to the scattered Stokes vector I.
The normalization condition for the Mueller scattering matrix
leads to the definition and expression for the scattering cross
section σ. For details of all these derivations we refer to a rele-
vant monograph (Stenflo 1994).

The result is

σ =
ω4

πc4

2
3

∣∣∣∣12 (n2 − 1)
∣∣∣∣2. (5)

The factor of 2
3 comes from the angular averaging of the geo-

metrical factors in the normalization condition for the Mueller
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scattering matrix. The squaring of n2 − 1 occurs because bi-
linear products of Jones matrices are used to form the Mueller
matrix.

Inserting Eqs. (3) and (4) in Eq. (5) we obtain

σ = Nσe
ω4

4ω2
0

∣∣∣∣∣ 1
ω0 − ω − iγ/2

+
1

ω0 + ω + iγ/2

∣∣∣∣∣2 , (6)

whereσe is, as we will see below, the Thomson scattering cross
section per electron, and is given by

σe =
8π
3

r2
e , (7)

where

re =
e2

4πε0mc2
(8)

is the classical electron radius. Since re = 2.818 × 10−15 m, it
follows that σe = 6.653 × 10−29 m2.

It is interesting to note that Eq. (6) contains one reso-
nant and one non-resonant term, which have exactly the same
form as in the Kramers-Heisenberg scattering theory. In quan-
tum electrodynamics these two terms are interpreted in terms
of time ordering of the Feynman diagrams. Thus the reso-
nant term represents absorption followed by emission, while
the non-resonant term represents the seemingly strange pro-
cess of emission followed by absorption. Since the classical
theory is not a perturbation theory, it produces automatically
both terms without the need for any intriguing time-ordering
interpretations.

If the oscillating medium would have resonances at sev-
eral frequencies other than ω0, which were coherently excited
by the same driving electric field E′q of the incident radiation,
then we would get a linear superposition of the Jones matri-
ces for the various resonances. Due to the bilinear multiplica-
tions between the Jones matrices when forming the Mueller
matrix, we would then get interference terms between scatter-
ing amplitudes belonging to different resonant frequencies. We
will see explicitly in the quantum-mechanical formulation how
such interferences must occur because the intermediate state
is a mixed quantum state (linear superposition of all possible
intermediate states).

In the limit of vanishing damping constant we obtain

σ = Nσe
ω4

(ω2
0 − ω2 )2

· (9)

Here we see that in the special case when the resonant fre-
quency is zero (i.e., no resonance at all), as we have with free
electrons,

σ = σT = Nσe, (10)

where σT is the Thomson cross section for scattering at free
electrons.

2.2. Derivation in terms of the Einstein coefficients

The phenomenological use of transition rates given by the
Einstein coefficients is conceptually simple and a convenient
way to find the magnitude of the scattering cross section, but
this approach cannot properly deal with quantum interferences
or polarization. Still, because of its simplicity and transparency,
it helps to illuminate the physics.

This approach conceptually views scattering as a two-step
process: radiative excitation, followed by spontaneous emis-
sion. Let us label the initial, intermediate, and final states by
indices i, e, and f , respectively. To make the treatment more
general, we allow i and f to be different (Raman scatter-
ing). i = f then represents the special case of Rayleigh scatter-
ing. The incident frequencies are νi (orωi = 2πνi), the scattered
frequencies ν f .

The coefficient of radiative absorption is, for a given
resonant transition i→ e,

κie = Ni Bie
hνi

4π
ϕν, (11)

where Bie is the Einstein coefficient for radiative absorption, Ni

the number density of atoms in state i, and ϕν is an area-
normalized profile function.

Of all the radiatively excited atoms, only the fraction ρe f

that represents spontaneous emission from level e to level f
constitutes the scattering transition under consideration.

ρe f = Ae f

/ ∑
j

Re j, (12)

where Re j stands for the total transition rate (radiative plus col-
lisional) from e to j, and we have to sum over all possible
states j. ρe f is thus a branching ratio, while

∑
j Re j is the ef-

fective damping rate γ or inverse life time of level e (although
it does not include the damping from elastic collisions, which
is important for line-broadening theory).

The scattering cross section σ represents the product of the
absorption cross section and the branching ratio. Thus

σ = κie Ae f /γ. (13)

Introducing the absorption oscillator strength fie and the statis-
tical weights gi, ge, and g f for the various states, and making
use of the Einstein relations between the transition rates, we get

Bie =
2π2e2

ε0 c h mωei
fie,

Ae f =
2hν3

f

c2
Be f ,

Be f =
g f

ge
B f e, (14)
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whereωei = (Ee−Ei)/� is the resonant frequency of the absorp-
tion transition (while ωe f represents the emission transition).
With Eqs. (11) and (13) this gives

σ = Ni σe ωi ω
3
f

3g f

ge

fie
ωei

f f e

ωe f

ϕν

4γ
· (15)

From this derivation we see how the factor ωiω
3
f arises: ωi re-

lates to the energy of the absorbed photons, while ω3
f comes

from the expression for spontaneous emission and can be seen
as representing the energy density (zero-point energy) of the
vacuum.

In standard non-LTE theory, ϕν is (in the frame of the atom)
taken to be the Lorentz profile:

ϕν =
γ

(ωe f − ω f )2 + (γ/2)2
· (16)

To dispel any confusion about a factor of 2π in the above ex-
pression we note that the normalization of ϕν is with respect
to
∫

dν =
∫

dω/ 2π , not with respect to
∫

dω .
If we define

Φν =
2/i

ωe f − ω f − iγ/2
, (17)

then we see that

ϕν = ReΦν. (18)

We further easily verify that ϕν can be converted to a product:

ϕν =
γ

4
Φν Φ

∗
ν. (19)

According to quantum-mechanical perturbation theory (see be-
low), one needs to add a non-resonant term to Φν in Eq. (17),
so that we instead use

Φν =
2
i

(
1

ωe f − ω f − iγ/2
+

1
ωei + ω f + iγ/2

)
· (20)

While this extra term, which represents emission followed by
absorption in the Feynman diagram interpretation, is unimpor-
tant in the neighborhood of the resonance, it is essential for the
continuum polarization, which receives its contributions from
the distant line wings, far from the resonances. As has been
pointed out in the preceding section, this extra, non-resonant
term follows automatically from the standard classical theory
and must be used at frequencies far from the resonances.

The correspondence with the classical theory is now mani-
fest. The classical theory corresponds to an S → P → S tran-
sition without electron spin, where ωei = ωe f = ω0, fie = f f e =

1, ωi = ω f , g f = 1, and ge = 3 (the three m states of the ex-
cited P state, or, classically, the three spherical vector compo-
nents of the oscillation, with q = 0,±1). Inserting these values
in Eq. (15), we retrieve precisely the classical scattering cross
section, as required by the correspondence principle.

2.3. Quantum-mechanical scattering

The phenomenological treatment in terms of transition rates
gives us the correct Raman scattering cross section for a sin-
gle scattering transition, but it does not include the quan-
tum interferences between all the possible excited states that
are involved in scattering from i to f , and it cannot deal
with the polarizability of a scattering transition. For this we
need the quantum-mechanical perturbation theory. For the
scattering cross section this theory gives the same results as
Eqs. (15)−(20), except that we need to sum over all the pos-
sible excited states before forming the product of the profile
functions.

Let us for convenience define a generalized profile function
as follows:

ψe =

√
gi g f fie f f e√
ωei ωe f

×
(

1
ωe f − ω f − iγ/2

+
1

ωei + ω f + iγ/2

)
· (21)

g = 2J + 1 is the statistical weight for each total angular mo-
mentum state J (or F in the case of hyperfine structure split-
ting). Further,

Ni =
gi∑
Ji
gJi

N, (22)

where N is the total population of all the fine-structure com-
ponents with total angular momentum Ji of the initial, lower
state, while the scattering transition that we consider refers to
one particular Ji value (here represented by index i in Ni). We
then get

σ =
N∑
Ji
gJi

1
4
σe ωi ω

3
f

∑
Je

3
2Je + 1

∣∣∣∣∑
ne

ψe(ne, Je)
∣∣∣∣2. (23)

We notice two types of summation in this expression: (1) a co-
herent summation of the generalized profile functions, done be-
fore the squaring is performed, and carried out over the radial
quantum number n = ne of the excited state e while the total
angular momentum quantum number Je is kept fixed; (2) an in-
coherent summation (done after the squaring has taken place)
over all the possible total angular momentum substates of the
excited state. The reason why the sum over Je is not part of the
coherent summation is that for the scattering opacity, in con-
trast to the scattering polarizability (see below), algebraic cal-
culations show that there is no quantum interference between
states of different angular momentum (cf. Stenflo 1994, p. 194;
Stenflo 1997, Eq. (12)), only between states of equal angular
momentum but different radial quantum number n.

2.4. Polarizability

The polarizability of a scattering transition is characterized by
the parameter W2, which represents the fraction of the scatter-
ing transitions that behave like classical, dipole-type scattering
in terms of polarization and angular dependence (as given by
the Mueller phase matrix). The remaining fraction, 1 −W2, be-
haves like isotropic, unpolarized scattering.
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Let us generalize the scattering cross section σ by intro-
ducing σK , where σ0 is identical to our previous σ and the
polarizability W2 can be expressed as

W2 = σ2/σ0. (24)

The expression for σK can be written

σK =
N∑

Ji
(2Ji + 1)

1
4
σe ωi ω

3
f

×
∑

Je1 , Je2

9 c (Ji, J f )
(K)
Je1−Ji, Je2−Ji

×
∑

Le1 , Le2

(−1)rie1 +rie2 +r f e1 +r f e2

×
∑

ne1 , ne2

ψe(ne1 , Le1 , Je1 )ψ∗e(ne2 , Le2 , Je2). (25)

With these expressions we obtain the polarizability W2 from
Eq. (24). The coefficients c(Ji, J f )

(K)
Je1−Ji , Je2−Ji

have been derived
and given explicitly in terms of simple algebraic functions of Ji

in Stenflo (1997). The factor of 9 is needed here because of
the way in which these coefficients were defined in Stenflo
(1997). It allows us to use, without modifications, the expres-
sions of that paper. rie is an integer that determines the sign
of the expression. It depends on the values of ∆L = Le − Li

and ∆J = Je − Ji in a way specified in detail in Stenflo (1994,
1997), where these parameters were introduced. The sign can
only become negative if i � f (Raman scattering). For Rayleigh
scattering the entire sign factor can therefore be omitted.

Index K represents the 2K-multipole. K = 0 relates to the
unpolarized intensity, K = 2 to the atomic alignment. The cir-
cumstance that σ0 is identical to our previous scattering cross
section σ implies that

9 c (Ji, J f )
(0)
Je−Ji , Je−Ji

=
3

2Je + 1
, (26)

as can be verified from the algebraic expressions in Stenflo
(1997). In addition, as noted in the previous subsection,
the c(0) coefficients are only non-zero when Je1 = Je2 . In this
isotropic case, where there is no interference between states of
different total angular momentum, the sign factor is always +1
and can accordingly be omitted. The sign factor therefore only
needs to be considered in the interference terms for the align-
ment represented by σ2, and then only for Raman scattering
when i � f .

If several different types of opacity sources are present, then
the effective polarizability of the medium is obtained by sum-
ming over the various opacity and alignment contributions la-
beled with summation index j:

W2, eff =
∑

j

σ2, j

/∑
j

σ0, j. (27)

2.5. Limb darkening and the last scattering
approximation

The amount of continuum polarization in the emergent radia-
tion depends on the effective polarizability W2, eff of Eq. (27)

and on the scattering geometry, in particular on the anisotropy
of the incident radiation field and the viewing angle. Since the
relative magnitudes of the various opacity sources depend on
temperature and density, W2, eff is height dependent. As the ra-
diation anisotropy is also height dependent and the medium
optically thick (multiple scattering), the full radiative transfer
problem needs to be solved numerically to obtain the contin-
uum polarization correctly.

It is however possible to obtain good estimates of the
amount of scattering polarization by using the idealization of
the last scattering approximation. Since the polarization am-
plitudes that we are dealing with are very small (a fraction of
one percent), the polarization of the incident radiation at the
last scattering event can be disregarded. It is thus assumed that
the polarization of the emergent radiation is created in a single
scattering event (the last one) rather than through multiple scat-
tering. The only thing we then need to know, besides W2, eff , is
the anisotropy of the incident radiation field that the last scat-
tering event sees.

Our next idealization is to let this anisotropy be given by
the observed limb darkening function at the considered wave-
length. This is not quite correct, since the observed limb dark-
ening refers to zero optical depth, whereas most of the observed
photons originate at line-of-sight optical depth unity, or vertical
optical depth µ, where µ is the cosine of the heliocentric angle.
This difference however becomes small at the extreme limb,
where µ goes to zero, since there the radiation comes from the
top of the atmosphere (in the plane-parallel approximation).
As W2, eff varies with height, we have to choose a value that
is representative for the height (around optical depth µ) from
where the bulk of the continuum photons come.

Thus, at least for order of magnitude estimates, we expect
the continuum polarization to scale with the product kGW2, eff ,
where kG is a geometric depolarization factor that depends on
the viewing angle and describes the dilution of the polarization
due to the angular integration over the incident radiation. For
pure 90◦ scattering we would have kG = 1. In the last scattering
approximation we obtain kG by multiplying the Rayleigh phase
matrix with an unpolarized Stokes vector and integrating over
all incident angles. As shown in Stenflo (1982), we then obtain

kG(µ) = G (1 − µ2) /Iν(µ), (28)

where

G =
3

16

∫ 1

−1
(1 − 3µ′2) Iν(µ′) dµ′. (29)

For convenience, and with sufficient accuracy within the con-
text of our present idealizations, we use the following analytic
representation of the limb darkening function,

Iν(µ)/Iν(1.0) = 1 − u − v + uµ + vµ2, (30)

since the empirically determined fit parameters u and v have
been tabulated by Pierce (2000) from 2000 Å to 1 µm. The
expression is valid for positive µ only. For negative µ we
set Iν(µ) = 0, since Eq. (30) represents the surface, where the
radiation field is only in the outwards direction. With this limb
darkening function,

G =
3

64
u +

1
20

v. (31)
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Fig. 1. Wavelength dependence of the anisotropy factor kG for µ =
0.1. Note that the effective Balmer jump occurs at substantially longer
wavelengths than the actual series limit (marked by the vertical line).

kG as calculated from the tabulation of u and v for µ = 0.1
(which is the standard limb distance used in most recordings
of the scattering polarization, like for the three atlas volumes
of the Second Solar Spectrum by Gandorfer 2000, 2002, 2004)
is given in Fig. 1. The filled circles refer to the rather widely
spaced wavelengths, for which u and v have been tabulated.
The smooth, solid curve has been obtained through spline in-
terpolation between these points. It is striking how kG increases
towards shorter wavelengths, from 5% at 7000 Å, to more
than 30% at 3000 Å, because the limb darkening is enhanced
when going from the red to the blue. Note also the signature
of the Balmer jump in the radiation anisotropy and how it is
shifted to considerably longer wavelengths than the actual se-
ries limit (marked by the vertical line in the figure). The main
physical cause for this shift will be described in Sect. 3.6.

While this idealized treatment provides a good description
of how the anisotropy and the continuum polarization vary with
wavelength, it does not give a good description of the center-to-
limb variation of the polarization. One reason for this is that the
scattering opacity is confined to an optically thin layer, most of
which lies above the non-polarizing region where the bulk of
the continuum intensity originates. Therefore the relative pro-
portion of polarized scattered photons to all photons scales with
the optical thickness in the viewing direction of the scattering
layer, i.e., in proportion to 1/µ. The relative center-to-limb vari-
ation of the scattering polarization is therefore expected to have
the approximate analytical form (1 − µ2)/µ, and will be given
in greater detail in Sect. 4.4 below. At the extreme limb, where
the scattering layer becomes optically thick, our idealization
for kG may be more valid, but it is clear that we should use it
with caution, as a tool to elucidate the basic physical mecha-
nisms without having to enter into the realm of radiative trans-
fer computations.

3. Scattering at hydrogen

The by far dominating contribution to the continuum opacity at
optical wavelengths on the Sun comes from hydrogen. We can

distinguish between unpolarized and polarizing opacity con-
tributions. Unpolarized contributions come from the H− opac-
ity and from bound-bound and bound-free radiative absorption
that is not part of a scattering process. The polarizing contri-
butions are due to scattering from initial levels n = 1 (Lyman
scattering) and n = 2 (Balmer scattering). In addition, there are
contributions from Thomson scattering at free electrons.

Lyman scattering at visible wavelengths occurs in the dis-
persion wings of the Lyman series lines, very far from the re-
spective resonance frequencies. The opacity in the visible is
attenuated by the great distance from these resonances, and is
approximately proportional to (ω/ω0)4 (cf. Eq. (9)), where ω0

is the center of gravity of the resonances in the Lyman series.
In contrast, Balmer scattering in the visible occurs in the midst
of the contributing resonances, which are distributed across the
visible range. The Balmer scattering contribution is however
attenuated by the population factor Nn=2/Nn=1. Quantitative
comparison of these attenuation factors (see below) shows that
the Balmer scattering contribution to the visible continuum is
much smaller than the Lyman contribution.

3.1. Oscillator strengths and Gaunt factors

To evaluate the expressions for the scattering opacity and polar-
izability in hydrogen, we need the oscillator strengths of all the
possible transitions, both the bound-bound and bound-free. For
bound-bound transitions in hydrogen between lower level n′
and upper level n, the absorption oscillator strength is

fn′n = GI f ′n′n, (32)

where f ′n′n is given by a simple algebraic expression due to
Kramers (1923),

f ′n′n =
26

3
√

3

1
gn′

1(
1

n′2 − 1
n2

)3
∣∣∣∣ 1
n3

1
n′3
∣∣∣∣, (33)

and GI is the dimensionless Gaunt factor of order unity for
the bound-bound case. Tables of the bound-bound oscillator
strengths have been given by Wiese et al. (1966) for the Lyman
series and by Green et al. (1957) for the Balmer series.

The bound-free case requires special considerations. A dis-
crete continuation of Kramers’ formula into the domain of con-
tinuum frequencies is obtained through substitution of quantum
number n with imaginary quantum number ik, where k is a real-
valued integer:

n→ ik. (34)

This is the reason for using the absolute value in Eq. (33),
needed to preserve the positive sign of f .

fn′k = GII f ′n′k, (35)

where GII is a second dimensionless Gaunt factor, also of order
unity, given for instance in graphical form in Menzel & Pekeris
(1935) and in greater detail by Karzas & Latter (1961). With
the bound-bound resonant transition frequency given by

ωnn′ = ω∞
[

1 −
(n′

n

)2 ]
, (36)
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where ω∞ is the frequency of the series limit (n = ∞), and the
statistical weight gn′ = 2n′2, Eqs. (32) and (33) become

fn′n =
25

3π
√

3

( ω∞
ωnn′

)3 n′

n3
GI. (37)

Similarly,

ωkn′ = ω∞
[

1 +
(n′

k

)2 ]
(38)

and

fn′k =
25

3π
√

3

(
ω∞
ωkn′

)3 n′

k3
GII. (39)

Note that we may in the following at any time switch our dis-
cussion from frequencies ω to wavelengths λ via a substitution
of the type ω∞/ωnn′ = λnn′/λ∞.

To properly treat the bound-free contributions beyond the
series limit (for λ < λ∞ ), we need to transform the discrete rep-
resentation of Eq. (39) (in which k is an integer) into a contin-
uous representation. Explicitly, the sum of ψe over the excited
levels ne in Eqs. (23) and (25) may be generalized to include
not only the bound-bound but also the bound-free transitions
by continuing the sum to go not only over n = 1→ ∞ , but also
over k = 1 → ∞ . The bound-free sum

∑
k ψe then needs to be

transformed into an integral through the substitution

∑
k

ψe →
∫

ψe dk. (40)

For simplicity we will here only do the bound-free calcula-
tions for the Rayleigh scattering case, since Raman scattering
with i � f does not contribute significantly to Lyman or Balmer
scattering at visible wavelengths. In this case ωei = ωe f , ω f =

ω, and since γ � ω0 can be disregarded in the dispersion
wings,

ψe = 2gi
fn′k

ω2
kn′ − ω2

(41)

according to Eq. (21). With Eqs. (35), (38)–(41), and the
substitution x = ωkn′/ω , we get∫ ∞

0
ψe dk =

gi

ω2

25

3π
√

3

1
n′
(
λ

λ∞

)2
×
∫ ∞
λ/λ∞

GII(x) dx
x3(x + 1)(x − 1)

· (42)

Since in the region beyond the series limit λ/λ∞ is always <1,
the integration range from λ/λ∞ to infinity will include the

pole x = 1. To the left of this pole the integral
∫ 1

λ/λ∞
dx di-

verges to −∞, while to the right the integral
∫ ∞

1
dx diverges

to +∞. However, in a symmetric neighborhood ε of x = 1, if
we replace x by 1+ ε, then for sufficiently small values of ε the
integral in Eq. (42) when taken only over this neighborhood
becomes, in the limit of vanishing ε,

1
2 GII(1)

∫ +ε
−ε

dε
ε
= 0. (43)

The integral vanishes because 1/ε is an odd function. We may
therefore solve the full integral numerically by splitting it in

two parts,
∫ 1−ε
λ/λ∞

dx and
∫ ∞

1+ε
dx, where ε must be� 1, and the

exclusion window must be placed fully symmetrically around
the singularity. GII(1) = 0.7973 for n′ = 1 (Lyman), 0.8762
for n′ = 2 (Balmer) (Menzel & Pekeris 1935).

3.2. Lyman scattering opacity

As the n′ = 1 state only consists of the S1/2 state, the initial
and final states i and f can only be different if the final state
has n ≥ 2. This is only possible for photons shortwards of Lyα,
where the solar spectrum is orders of magnitude weaker than
in the visible. For this reason only the Rayleigh scattering tran-
sitions S1/2 → P3/2 → S1/2 and S1/2 → P1/2 → S1/2 are of any
practical relevance for scattering from n′ = 1.

For Rayleigh scattering we have according to Eqs. (23)
and (41)

σ =
N∑
Ji
gJi

σe

∑
Je

3
2Je + 1

∣∣∣∣∣∣
∑
ne

gi fie(
λ/λei

)2 − 1

∣∣∣∣∣∣
2

· (44)

For the Lyman series, gi =
∑

Ji
gJi = 2, Je = 1/2 and 3/2,

and the two oscillator strengths fie for the S1/2 → P1/2

and S1/2 → P3/2 transitions are 1/3 and 2/3 of the total os-
cillator strength fn′ne for the transition n′ = 1 → ne. This gives
us the Lyman scattering cross section

σLy = Nσe

∣∣∣∣∣∣
∑
ne

f1ne(
λ/λne1

)2 − 1

∣∣∣∣∣∣
2

, (45)

where N is the total population of level n′ = 1. For the princi-
ple of spectroscopic stability to be satisfied, we must retrieve
the identical expression if we let the fine structure splitting
go to zero, which is physically equivalent to letting the elec-
tron spin be zero and therefore have Je = Le = 1. In this
case gi =

∑
Ji
gJi = 1, which, when inserted in Eq. (44), also

leads to Eq. (45).
For the continuum range below the Lyman limit at λ∞ =

911.5 Å, we need to replace the sum in Eq. (45) with the inte-
gral in Eq. (42) times ω2/(2gi) (cf. Eq. (41)).

The results for the scattering opacity σLy per atom (i.e.,
for N = 1) are plotted in Fig. 2 over the wavelength
range 0−3000 Å, in units of the Thomson scattering cross sec-
tion σe. The dashed curve for wavelengths above the Lyman
limit is a simple analytical approximationσH given by Baschek
& Scholz (1982):

σH = σe

(966
λ

)4 [
1 +
(1566
λ

)2
+

(1480
λ

)4 ]
, (46)

where λ should be given in Å. We see from the figure that this
approximation gives sufficient accuracy above 2000 Å.

To obtain well defined peak amplitudes for the bound-
bound transitions, we have to choose the values for the
Doppler widths and damping constants for the various bound-
bound transitions. Here we have adopted a Doppler broadening
of 2 km s−1 for all the resonances. The choice of damping con-
stant for the Lyman lines will be defined in the context of a
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Fig. 2. Lyman scattering opacity per hydro-
gen atom, in units of the Thomson scatter-
ing cross section per electron. The dashed
curve represents the analytic expression
of Eq. (46), which is an excellent approx-
imation above 2000 Å. Below the Lyman
limit the scattering behaves as if the excited
electron were free (like Thomson scatter-
ing), while the cross section for radiative
ionization (dash-dotted curve) is many or-
ders of magnitude larger.

discussion of the behavior of the Balmer bound-bound absorp-
tion near the series limit, which we will do in Sect. 3.6 below.
The detailed pressure broadening mechanisms of the hydrogen
lines are quite complex, but we do not need to go into these
details here, since our focus is on the contributions to the con-
tinuum, which take place in the distant dispersion wings. The
damping constant plays no role for the scattering opacity in the
dispersion wings, as seen from Eqs. (44) and (45).

3.3. Bound-free absorption

Below the Lyman limit we have for comparison also plotted
in Fig. 2 the coefficient for radiative ionization. According to
Eq. (11) the total (integrated) contribution per atom from a dis-
crete transition to the absorption coefficient is

κ̄n′k /Nn′ = Bn′k hν/4π. (47)

With Eq. (14) we get in terms of a continuum of states k,

κ̄ dν /Nn′ =
e2

4ε0 m c
d fn′k, (48)

where

d fn′k = fn′k dk = fn′k
dk
dν

dν. (49)

From Eq. (38) we get

dν
dk
= −2ν∞ n′2

k3
, (50)

which together with Eq. (39) gives

κ̄ν dν = 2.601 × 10−6N
GII

n′
(
ν∞
ν

)3 dν
ν∞

(51)

(SI units), where N represents Nn′ . For the Lyman transitions
with n′ = 1 and λ∞ = 911.5 Å,

κ̄Lyman(ν) = 7.91 × 10−22 N GII

(
λ

λ∞

)3
· (52)

In units of the Thomson scattering cross section, which is

σe = 6.653 × 10−29 m2 (53)

(cf. Eqs. (7) and (8)), the Lyman absorption per unit atom
becomes

1
N

κ̄Lyman

σe
= 1.189 × 107 GII

(
λ

λ∞

)3
, (54)

which is about 7 orders of magnitude larger than the Lyman
scattering cross section near the Lyman limit.

We see from Fig. 2 that the cross section for scattering via
continuum states is almost identical to the Thomson scattering
cross section at free electrons. This is to be expected, since
when the continuum state is not a bound state, the electron will
tend to behave like a free particle while in this state. It is also
natural to expect the cross section for radiative ionization to be
very much larger than the scattering cross section, since once
the electron has become free, it is unlikely to return back to the
initial state, as it would have to do in a scattering transition. The
small likelihood that this will occur is automatically included
in the present theory.

Another important feature that is the result of the coher-
ent nature of the scattering process is the occurrence of very
deep and narrow minima in the scattering opacity between
the bound-bound resonant wavelengths. They are the result of
quantum interference between the excited states of different n
quantum number. We note in Eq. (45) that the scattering am-
plitude of each transition is negative for λ < λne1 and posi-
tive for λ > λne1. Between the resonances there is therefore
cancellation between positive and negative contributions as the
intermediate states are superposed coherently. It is because of
these quantum cancellations that we get the deep, narrow dips
in the scattering opacity. For the non-coherent process of radia-
tive absorption, such dips do not occur (as we will see in Fig. 3
below).
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Fig. 3. Main contributors to the Sun’s continuum opacity in the visible and near UV. The lower solid curve represents the Balmer scattering
cross section, while the upper solid curve gives the cross section for bound-bound radiative absorption. Pressure broadening due to the statistical
Stark effect is accounted for to describe convergence of the bound-bound opacities to the bound-free ones. Comparison is made with the Lyman
scattering cross section (dashed), the Thomson scattering cross section (horizontal solid line), the H− opacity (dotted), and the bound-free
opacity for radiative ionization (dash-dotted). The relative contributions of these opacity sources depend on the electron densities and pressures
and the relative level populations of hydrogen. The values chosen are typical for solar conditions.

3.4. Balmer scattering opacity

Only for a fraction of the emission processes in a Balmer line
the excited state has been radiatively excited by that Balmer
transition. Conversely, radiative absorption in a Balmer line is
followed by Balmer emission in only a fraction of the cases.
Therefore the Balmer scattering opacity is considerably smaller
than the Balmer coefficient for radiative absorption. While this
distinction is important for the Balmer case, it was not needed
when considering Lyman scattering at visible wavelengths,
since excitation from the ground state to a virtual state that lies
far below the first resonance has no other decay channel than
spontaneous emission back to the ground state, i.e., a Rayleigh
scattering transition.

As we will see, the Balmer scattering opacity does not
contribute significantly to the continuum polarization problem.
The coefficient of bound-bound radiative absorption, on the
other hand, becomes important as we get close to the Balmer
series limit, across which it transforms itself from bound-bound
to bound-free unpolarized opacity in a continuous manner,
without any real discontinuity, because of the increasing col-
lisional damping, which smears the resonances into a quasi-
continuum near the series limit.

While the Lyman transitions have two fine-structure
components, the Balmer transitions (with n′ = 2) have 7: S1/2 −
P1/2, S1/2 − P3/2, P1/2 − S1/2, P1/2 − D3/2, P3/2 − S1/2, P3/2 −
D3/2, P3/2 − D5/2, which can be combined to form Raman scat-
tering transitions whenever Ji � J f . Since the fine-structure
splitting is small, we can for our continuum polarization

problem neglect it by using the principle of spectroscopic sta-
bility and letting the electron spin be zero. In this simplified
case, Balmer scattering can only occur in the form of three dif-
ferent Rayleigh scattering transitions, all of which have i =
f : S→ P→ S, P→ S→ P, and P→ D→ P.

The application of the general theory to the Balmer case is
done like in the Lyman case, although now we have to deal with
the oscillator strengths of the individual fine structure compo-
nents rather than with the total oscillator strength. In Fig. 3 we
have plotted as the solid curve with the many resonances in
the bottom part of the diagram the results for the Balmer scat-
tering opacity per atom σBalmer in units of the Thomson scat-
tering cross section, after scaling it with the Boltzmann fac-
tor N2/N1 = 4 exp(−hν21/kT ), where ν21 is the frequency of
Lyman α (since it defines the energy separation between the
first two levels of hydrogen). Here we will use T = 5740 K (the
Sun’s effective temperature), which gives N2/N1 = 4.62×10−9 .
A more proper scaling would require radiative-transfer calcu-
lations, but for our order of magnitude comparison between the
Balmer and Lyman opacity contributions, the exact choice is
not important here.

As we see from a comparison with the Lyman contribution
at visible wavelengths, obtained from expression (46) and plot-
ted as the dashed curve in Fig. 3, the Balmer contributions to
the continuum are at least 3 orders of magnitude smaller than
the Lyman contributions, except in the vicinity of the Balmer
resonant frequencies, where the Balmer contributions naturally
dominate.
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As in the case of Lyman scattering, the amplitudes ofσ near
the line cores are determined with the assumption that the
Doppler broadening is 2 km s−1, and that the damping constant
varies as described in Sect. 3.6 below.

3.5. Bound-bound absorption

The coefficient for radiative absorption for bound-bound tran-
sitions i → e is given by Eq. (11). With Eq. (14) for Bie

and expressing the profile function in terms of a Voigt func-
tion H(a, v), we obtain

κie

N2
= 2.65 × 10−6 fie

2ω0

ω + ω0

1

∆νD
√
π

H(a, v) (55)

in units of m2. N2 is the population of the lower Balmer
level (with n′ = 2), and ∆νD is the Doppler width. The fac-
tor 2ω0/(ω + ω0) is needed to account for the non-resonant
term of the profile function of Eq. (20).

Normalizing with the Thomson scattering cross section to
make the expression dimensionless, multiplying with the rel-
ative level population factor N2/N1 to refer to the popula-
tion N1 of the ground state, and assuming a Doppler velocity
of 2 km s−1, we obtain

1
N1

κie

σe
= 10.4

λ

1 + λ0/λ
fie H(a, v) (56)

if λ is expressed in Å. As for the scattering opacity it has been
assumed that N2/N1 = 4.62 × 10−9.

The coefficient of radiative absorption as computed from
Eq. (56) with the choice of damping constants as described in
the next subsection is plotted in Fig. 3 as the solid resonant
curve in the upper part of the diagram. Note how this curve
does not have the deep dips between the resonances that the
scattering opacity has, since these dips are exclusively due to
quantum interferences, which only affect the scattering prob-
lem. When approaching the series limit the amplitude of the
resonant oscillations of the curve goes to zero, which leads to a
smooth and continuous transition to the coefficient for radiative
ionization (bound-free case). The way in which the series limit
is approached depends on the details of the pressure broaden-
ing of high-lying hydrogen levels and will be discussed in the
next subsection.

For comparison we have in Fig. 3 also given the Thomson
scattering cross section σT and the H− absorption coeffi-
cient σH− . To obtain σT from σe we have applied as scaling
factor an estimate of the ratio Ne/N1 between the electron den-
sity and the hydrogen population density in its ground state.
Based on model atmosphere calculations we adopt as a charac-
teristic number Ne/N1 = 7.7 × 10−5. We see that the Thomson
scattering contribution to the continuum is 2–3 orders of mag-
nitude larger than the Balmer scattering contribution, but typ-
ically one order of magnitude smaller than the Lyman contri-
bution (with the difference decreasing with wavelength), and
generally smaller than the Balmer bound-bound absorption co-
efficient, in particular as we approach the series limit.

Finally we make a comparison with the H− opacity, which
we have taken from Chandrasekhar & Breen (1946), applied to

an electron pressure of Pe = 0.395 (SI units) and a temperature
of 5740 K. It has been plotted as the dotted curve in Fig. 3.
H− is the dominating source of continuum opacity, typically
two orders of magnitude larger than the Lyman contribution.

3.6. Shift and smoothing of the Balmer jump

The level of the scattering opacity outside the immediate cores
of the resonances is independent of the assumption for the
damping constant γ, as seen from Eqs. (23) and (21). In con-
trast, for the coefficient of bound-bound radiative absorption
the levels of the distant line wings scale with γ, as seen from
Eqs. (11) and (16). Note also that the wings of the Voigt pro-
file H(a, v) in Eq. (56) scale with γ. The coefficient for bound-
bound absorption is therefore a sensitive function of the line-
broadening processes. Doppler broadening affects only the line
cores and is unimportant in the wings, where collisional or
pressure broadening dominate.

Pressure broadening increases greatly as we approach the
series limit. This smearing leads to a merging of the crowded
high-level resonances into a quasi-continuum before the ion-
ization limit is reached, resulting in a gradual approach to the
ionization limit rather than a discontinuous jump. It is beyond
the scope of the present paper to model in any quantitative de-
tail how this quasi-continuum is formed. The aim here is to
try to clarify the main physics involved and make a relatively
crude approximate treatment that can be used to compare with
the observations and thereby to verify that the relevant physical
mechanisms have been identified.

Pressure broadening of the hydrogen lines is normally de-
scribed in terms of the statistical Holtsmark theory, according
to which the broadening is due to the Stark effect splitting
of the lines from the statistically fluctuating electric fields of
the surrounding ions and electrons. The resulting Holtsmark
shape of the absorption coefficient in the line wings is found
to vary with 1/∆λ5/2 (Unsöld 1955). As this is steeper than
the 1/∆λ2 decrease of the unbroadened, quantum-mechanical
dispersion wings, the ordinary opacity from the dispersion
wings will take over at large distances from the resonances.
Since for the continuum problem we are only interested in the
behavior far from the resonances, it is a reasonable approxi-
mation for our purposes to describe the lines in terms of Voigt
profiles with a damping constant γ, which leads to a 1/∆λ2 be-
havior in the wings. For γ we use

γ = ∆E/�, (57)

where ∆E is the typical splitting due to the Stark effect.
Following Inglis & Teller (1939) and Unsöld (1955),

∆E ≈ 3
2

a e F (58)

for the outer components of the Stark splitting pattern, where e
is the electron charge, F the electric field strength, and a the
major half-axis of the electron orbit around the nucleus.

a = a0 n2, (59)

where n is the main quantum number, and

a0 = 5.29 × 10−11 m (60)
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is the Bohr radius. Since the energy separation between the
excited states decreases as 1/n3 as we approach the series
limit, while the Stark splitting goes as n2, we see that the
splitting must become larger than the level separation above
a certain level n. This is where the quasi-continuum begins. It
is approached in a continuous manner when going to shorter
wavelengths.

According to Unsöld (1955),

F = 8.8 e N2/3 (61)

in cgs units, where N is the number density of charged parti-
cles (ions and electrons). Different authors give different val-
ues for the numerical factor, but such differences are irrelevant
for our approximate treatment. As an exception we give here
the numerical factor in cgs rather than SI units, to allow direct
comparison with previous literature.

The damping parameter a in the Voigt function
is γ/(2∆ωD), or, using the Doppler formula,

a =
γ λ

4π vD
· (62)

Choosing vD = 2 km s−1 for the Doppler velocity and N =
1019 m−3 for the particle number density as typical values for
the solar atmosphere, we obtain from Eqs. (57)−(62)

a = 3 × 10−5 n2 λ (Å). (63)

Using this expression in Eq. (56), we obtain the upper resonant
curve that represents bound-bound absorption in Fig. 3. The
reason why the oscillation amplitude of the resonances goes to
zero so quickly as we approach the series limit is that the pres-
sure broadening due to the Stark effect increases to become
larger than the level separation. Without this effect the oscil-
lation amplitudes would stay large much closer to the series
limit.

In the range below the Balmer limit we plot in Fig. 3 as
dot-dashed the bound-free cross section for radiative ioniza-
tion, like in Fig. 2. We see that this bound-free cross section is
reached well before the series limit by the rapid convergence
of the bound-bound cross section oscillations. We also note
that the Balmer absorption opacity becomes comparable to the
H− opacity near the Balmer limit and is larger there than the
Lyman scattering opacity (dashed line in Fig. 3). The wave-
length where the bound-bound radiative absorption coefficient
surpasses the Lyman opacity lies approximately 140 Å above
the series limit and is the place where the effective “Balmer
jump” transition in the scattering polarization may be expected
to begin. A wavelength shift of order 100 Å of the apparent
Balmer jump is indeed seen in the observational data, as we
will see below.

In the present simplified treatment we have not accounted
for collisional ionization, which increases with n, and photo-
ionization, which decreases with n. For high levels collisional
ionization will dominate over bound-bound radiative absorp-
tion and couple effectively to the continuum state. This may
speed up the transition to a quasi-continuum and thereby both
shift and steepen the effective Balmer jump. The quantitative
details of this complex subject is however outside the scope of
the present paper.

3.7. Effective polarizability

As we have seen in Sect. 2.4, the intrinsic polarizabilities W2 =

σ2/σ0 of the individual scattering transitions need to be com-
bined, weighted according to their relative opacity contribu-
tions, to obtain the effective polarizability W2, eff of the medium.
With

σtot =
∑

j

σ j, (64)

where σ j = σ0, j are the different opacities, we can write
Eq. (27) as

W2, eff =
∑

j

σ j

σtot
W2, j. (65)

In the case of the continuum polarization of the visible so-
lar spectrum, we have seen from Fig. 3 that there are only
four opacity contributions of any practical relevance for the
continuum: Two of them, H− (σH− ) and Balmer radiative ab-
sorption σBalmer (bound-bound above, bound-free below the
Balmer limit), have polarizability zero, while the other two,
Lyman (σLyman) and Thomson (σThomson) scattering, have po-
larizability unity (like classical dipole scattering). The polariz-
ability of Balmer scattering is more complicated and of inter-
mediate magnitude, since the three contributing fine-structure
scattering transitions have different polarizabilities and need
to be weighted together properly. Since however the Balmer
scattering opacity is insignificant in the continuum polarization
context, we will not address this problem further here.

A more correct way to add the opacity contributions in a
weighted way is to attach

∫
ϕνJν dν to the scattering transi-

tions, and Bν(T ) to the pure absorption transitions if they are
treated in LTE. This kind of weighting is automatically done
in the formalism of radiative transfer. Here, in our phenomeno-
logical treatment that bypasses radiative transfer, we make the
simplifying LTE-type assumption that

∫
ϕνJν dν and Bν are of

the same magnitude, which allows us to simply write

σtot = σLyman + σThomson + σH− + σBalmer. (66)

Then

W2, eff =
σLyman + σThomson

σtot
· (67)

The way in which the relative contribution of σBalmer

to σtot varies as the bound-bound opacity contributions con-
verge to the bound-free ones governs the shape and magni-
tude of the effective Balmer jump in the effective polarizabil-
ity W2, eff and the observed polarization, as we will see below
in Sect. 4.3.

4. Empirical determination of the continuum
polarization

We base our empirical determination of the continuum polar-
ization on the Atlas of the Second Solar Spectrum that has
been compiled in three voumes by Achim Gandorfer. Atlas
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Vol. I covers 4625−6995 Å (Gandorfer 2000), Vol. II cov-
ers 3910−4630 Å (Gandorfer 2002), while the still unpub-
lished Vol. III covers 3161–3913Å. The scattering polariza-
tion (Stokes Q/I) in the solar spectrum has been recorded in
seemingly non-magnetic solar regions near the limb, always at
a limb distance that corresponds to µ = 0.1 (which is 5 arcsec
inside the extreme limb). The positive Q direction is defined as
the direction parallel to the nearest solar limb, i.e., perpendicu-
lar to the radius vector from disk center. All the recordings have
been made with the Zurich Imaging Polarimeter ZIMPOL (cf.
Povel 1995). For Volumes I and II of the Atlas ZIMPOL was
used at IRSOL (Istituto Ricerche Solari Locarno), for Vol. III
that covers the UV portion ZIMPOL was used at the McMath-
Pierce facility of the National Solar Observatory (Kitt Peak).

While the three atlases provide very high accuracy in terms
of relative polarization values, the zero point of the polarization
scale cannot be determined with comparable precision due to
instrumental effects. On spectral scales less than about 10 Å the
relative spectral variations in Q/I with the polarized line pro-
files are very well determined, but the Q/I zero-point offset is
floating around on spectral scales larger than 10 Å. In the pub-
lished atlases the Q/I zero point has been fixed by fitting the
polarized continuum to the theoretical value derived from the
radiative-transfer theory of Fluri & Stenflo (1999). This proce-
dure of relying on theory however cannot be used if we want
to obtain an empirical determination of the continuum polar-
ization from the atlas data. For such a determination we have
to regard the zero point of the polarization scale as an entirely
unknown quantity that needs to be determined in the same con-
text together with the value for the continuum polarization. The
adopted procedure for doing this will be outlined in the next
subsection.

4.1. Depolarizing blend lines and the zero point
of the polarization scale

The richly structured Second Solar Spectrum contains, like
the ordinary intensity spectrum, a multitude of spectral lines
superposed on a background continuum. In the polarized spec-
trum we can distinguish between two types of lines: depo-
larizing and intrinsically polarizing lines. For the depolariz-
ing lines the unpolarized line opacity dilutes the polarizing
continuum opacity such that the continuum polarization level
gets depressed. In Q/I such lines therefore have the appear-
ance of absorption lines, similar to the corresponding absorp-
tion lines in the intensity spectrum. The intrinsically polarizing
lines, on the other hand, appear like “emission” lines in Q/I
if they polarize more than the continuum. The Second Solar
Spectrum contains a mixture of both types of lines. Since the
amount of intrinsic line polarization is modified by the Hanle
effect through the presence of hidden, turbulent magnetic fields
(Stenflo 1982), and since these fields vary with time, the rel-
ative proportion of absorption- and emission-like lines in the
Second Solar Spectrum varies with phase of the solar cycle (cf.
Berdyugina et al. 2002).

Let us assume that we have been able to find a spectral re-
gion that only contains purely depolarizing lines that have no

intrinsic line polarization. Let p = Q/I be the “true” polariza-
tion (without zero-point error) and pc the corresponding level
of the continuum (outside the spectral lines). Then we may
model the relative line depth in Q/I in terms of the relative line
depth in intensity I with the following one-parameter model:

pc − p
pc

=

(
Ic − I

Ic

)α
· (68)

Here Ic is the continuum intensity, and α is the free model
parameter that determines the shape of the depolarizing lines.
For α = 1 the relative line depths in Stokes I and Q/I would
be identical. For smaller values of α the relative Q/I line depth
is larger than the I line depth. In the extreme case of α = 0
even minor depressions in intensity would result in complete
depolarization, which is certainly not observed.

While a statistical analysis of the first atlas survey of the
Second Solar Spectrum (based on observations made in 1978,
in Stenflo et al. 1983a,b) suggested that a value of α = 1 would
provide an adequate description of the depolarizing lines, later
work with ZIMPOL indicated that a considerably lower value,
like α = 0.55, would be more appropriate for the particular
spectral windows that were considered (Stenflo et al. 1998).
More recently the theoretical mechanisms behind the forma-
tion of the depolarizing line profiles have been identified, and
a parameter survey has been performed (Fluri & Stenflo 2003).
It is found that the depolarizing line depth is a sensitive func-
tion of height of formation, and that this function is entirely
different for lines formed by pure absorption as compared with
lines formed by unpolarized scattering. In terms of the sim-
plified model of Eq. (68), one may say that the value of the
parameter α depends on the details of line formation and may
vary considerably from one line to the other. Theory does not
allow us to find a value of α that applies to all lines, there will
be a substantial scatter between the lines. Therefore Eq. (68)
only has validity in a statistical sense for an ensemble of spec-
tral lines, and it is prudent to treat α as a free parameter that is
poorly known.

Since the zero point of the polarization scale is unknown
and floating around on scales larger than 10 Å, the observed
polarization pobs is the sum of the true polarization p and the
value p0 of the true zero point on the chosen polarization scale:

pobs = p + p0. (69)

The measured intensities I are usually normalized to some
maximum intensity value Imax in the observed spectral win-
dows. This produces a dimensionless observed quantity bobs,
but the value of Imax may differ from the true continuum by a
factor f . Thus

bobs = I/Imax,

Ic = f Imax. (70)

Combining Eqs. (68)–(70) we obtain

pobs = pc [ 1 − (1 − bobs/ f )α ] + p0. (71)

pobs and bobs are the observables that are obtained from the
atlases as functions of wavelength, while pc, p0, α, and f are
the four model parameters.
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Fig. 4. Illustration of a 2-parameter fit to
the observed Q/I with the model given
by Eq. (71), assuming that α = 0.6.
The thick solid lines represent the obser-
vations (taken from the currently unpub-
lished UV portion of Gandorfer’s Atlas of
the Second Solar Spectrum), while the thin
curves represent the model. The determined
level of the continuum polarization pc is
given by the horizontal line in the bottom
panel.

The parameter f only presents a certain problem in the UV,
where the spectrum is very crowded, and no clean continuum
window is available. Here the level of the intensity contin-
uum Ic is chosen manually to be consistent with other spectral
atlases. This choice of Ic fixes the value of parameter f and
leaves us with three free model parameters, which can be de-
termined by an iterative least squares fitting method. Although
such a 3-parameter fit generally converges to a unique solution,
the goodness of the fit depends only weakly on parameter α.
The fit procedure becomes numerically much more robust if
we fix the value of α and only seek to determine the two free
parameters pc (the continuum polarization) and p0 (the zero
point of the polarization scale).

The procedure is illustrated in Fig. 4, where we for clarity
have selected a spectral region that seems to be devoid of in-
trinsically polarizing lines. The thick solid lines represent the
observations, while the thin solid lines illustrate the model. In
this example we have assumed ad hoc that the value of α is 0.6,
and then done a 2-parameter fit to the observed Q/I curve. The
so obtained value pc of the continuum polarization is given as
the horizontal line in the lower panel (Q/I). The thin curve in
the upper panel (I/Ic) represents [(Ic − I)/Ic]0.6. This curve,
when scaled with the value of pc, becomes the thin fit curve in
the lower panel. We see that the fit is excellent, which means
that the value of pc is very accurately determined, provided that
the value of α has been chosen correctly.

Note that the thick solid curves are slightly thicker
around 3304.3 Å, since there is the overlap region of two sepa-
rate spectral recordings that have been pieced together to cover
the whole spectral window shown in Fig. 4. The almost imper-
ceptible broadening of the curves in the overlap region illus-
trates the nearly perfect reproducibility of every single wiggle
of the spectral recordings in both I/Ic and Q/I, which indicates
that practically all the tiny Q/I wiggles are solar features and
not noise.

The excellent match that we see between the thick and thin
curves in the Q/I diagram would be nearly as perfect also for
other values of α, so the quality of the fit cannot be used as
a good criterion for the selection of α. The only significant
change in the fit diagram is that the Q/I continuum level and

zero point would be placed differently for other values of α.
With the help of Fig. 4 we can however understand and get a
feeling for how the extracted value of pc depends on α. If α
were larger, for instance unity, the thick and thin curves in
the I/Ic panel would coincide. This would in the Q/I diagram
have the effect both that the continuum level would be low-
ered to lie closer to the observed curve, and at the same time
that the zero point of the scale would be lowered as well to be
somewhat farther from the observed curve. These effects partly
compensate each other in producing a value for pc, but for the
special case of Fig. 4 the lowering of the continuum is some-
what larger than the lowering of the zero point, so that the net
effect is a reduction of pc. This net effect is however relatively
small.

In spectral regions with little line blanketing and weak ab-
sorption lines, however, which is the situation in the red part
of the spectrum, an increase of α from 0.6 to 1.0 will have the
opposite net effect: The zero level will be lowered more than
the continuum level, so that the value of pc will increase with
increasing α. In summary we see that the dependence of the
extracted value of pc on the assumed value of α is opposite
between the UV and the red parts of the spectrum, since it is
related to the degree of line blanketing, but that on average the
dependence is relatively modest. This rather weak dependence
on α implies that our method of finding the empirical value of
the continuum polarization should be rather robust in spite of
the uncertainties in our knowledge about the formation of the
depolarizing lines.

4.2. Results of model fitting

We have seen in the preceding subsection that the fit proce-
dure works well, provided that the spectral fit region exclu-
sively contains depolarizing lines. The spectral region in Fig. 4
with only depolarizing lines that we have used to illustrate the
method is however not typical for the Second Solar Spectrum.
Usually, intrinsically polarizing lines are abundant everywhere
in the spectrum. Their presence would invalidate the model fit,
since the model is based on Eq. (68), which of course has no
validity for lines with intrinsic polarization. We therefore have
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Fig. 5. Continuum polarization pc, as
determined from the Atlas of the Second
Solar Spectrum using the model of
Eq. (68). Asterisks represent model fits
with α = 1.0, filled circles fits with α =
0.6, open circles fits with α = 0.3. The
vertical lines give the resonance wave-
lengths of the first ten Balmer lines,
plus the series limit as the left-most ver-
tical line. The three solid curves rep-
resent second-order polynomial fits to
the log pc values: a central curve as
the most likely representation, and two
outer curves that indicate the approxi-
mate lower and upper limits.

to take great care to exclude intrinsically polarizing lines before
applying the fit procedure.

Intrinsic line polarization comes with all kinds of ampli-
tudes and profile shapes and is therefore difficult to identify and
isolate except in the cases when the line polarization clearly
dominates over the continuum polarization with profile fea-
tures that look like “emission” lines in Q/I. Due to the highly
individualistic behavior of the spectral features in the Second
Solar Spectrum we have refrained from trying to find some au-
tomated computer algorithm that could decide whether or not
intrinsic line polarization is present at a given wavelength, and
instead resorted to a manual procedure. Thus we have done
careful visual inspection of the Second Solar Spectrum with
educated judgement based on many years of experience in deal-
ing with this spectrum, and so defined hundreds of “exclusion
windows” of various widths throughout the spectrum. The data
inside these exclusion windows are skipped by the least squares
fit procedure because of their “contamination” with intrinsic
line polarization.

To determine the continuum polarization pc as a function
of wavelength we divide the spectrum into a sequence of par-
tially overlapping segments. Each segment consists of approxi-
mately 660 points, with the wavelength monotonically increas-
ing but with the exclusion windows skipped. If no exclusion
window is present, 660 points corresponds to about 6 Å, oth-
erwise the segment as expressed in Å is wider. For each seg-
ment pc and p0 are determined by the iterative least squares fit,
using widely different start values for the iterations to verify
the uniqueness of the fit. Due to the uncertainty in the proper
choice of α to use for the fit, we make three sets of fits through-
out the whole spectrum, for the three widely different α val-
ues 0.3, 0.6, and 1.0. It is highly unlikely that the statistically
“true” value of α would lie outside this very wide range. Trials
with 3-parameter fits, using α as a free parameter, result in a
wide distribution of α values, but the bulk of the distribution

is bracketed by the extreme values of α = 0.3 and 1.0 that we
have chosen here.

The results of these fits are presented in Fig. 5, where
the pc values for each spectral segment are plotted (in log-
arithmic scale) vs. the average wavelength of the segment.
Three different symbols are used for the three α values: as-
terisks for α = 1.0, filled circles for α = 0.6, and open circles
for α = 0.3. To reduce the scatter of the points we have in
Fig. 5 applied median smoothing with a running window that
increases in width from 11 segments in the UV to 21 segments
in the red. The corresponding window width in Å depends on
the distribution of the exclusion windows but is of order 100 Å
in the UV and 200 Å in the red. This is smaller than the scale
over which pc varies significantly.

We notice a big gap in the data points between 3730
and 4090 Å. The reason for this is not the absence of data
but the circumstance that this region is completely swamped
with strongly polarizing lines, which invalidate our proce-
dure to find the continuum polarization. The polarization from
the Ca  K 3933 and H 3968 Å lines dominates the spectrum
over more than 200 Å. In the lower portion of the gap the spec-
trum is crowded with polarizing lines of the CN molecule as
well as a number of strong iron lines, while in the upper por-
tion of the gap there are some very strongly polarizing lines
of Fe  and Sr .

For reference, vertical lines have been drawn in Fig. 5 to
mark the location of the Balmer series lines (up to H10) as
well as the Balmer limit at 3646 Å (the left-most vertical line).
The most notable feature here is a very clear and conspicuous
Balmer jump, which however does not occur at the series limit
but at considerably longer wavelengths (nearly 80 Å longer),
as expected from pressure broadening of the highly excited hy-
drogen levels, as explained in Sect. 3.6.

We notice in Fig. 5 a slight but systematic dependence of
the fit values on the assumed value of parameter α. At longer
wavelengths the asterisks lie systematically above the open
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circles, while in the UV the opposite situation is the case. An
explanation for this wavelength variation of the α dependence
was given at the end of the preceding subsection.

In the UV the main source of scatter of the points is
due to the systematic α dependence of the results. At higher
wavelengths, however, other sources of scatter dominate, much
because of the presence of non-excluded lines with weak and
inconspicuous intrinsic polarization. Figure 5 may give the
misleading impression that the noise gets larger with increas-
ing wavelength. However, we have to remember that the po-
larization in the figure is given with a logarithmic scale, and
that the amplitude decreases by two orders of magnitude, from
about 1% to about 0.01%, as we go from the UV to the red part
of the spectrum. It is actually remarkable that it is at all possi-
ble to extract the minute values of the continuum polarization
from the atlas data at these long wavelengths. That this can be
done is testimony to the high quality of the atlas data.

In the following we will not try to distinguish between the
various sources of scatter of the data points. Thus we will not
try to treat the data referring to the three different symbols dif-
ferently, but will consider the scatter of all the symbols as rep-
resentative of the uncertainty in the determination of the con-
tinuum polarization pc. Since we know from theory that pc is
expected to vary only slowly with wavelength (except near the
Balmer jump) in a lin-log representation like Fig. 5, it is suf-
ficient to describe the dependence of log pc on wavelength in
terms of a second-order polynomial. However, because of the
Balmer jump, we have to use a different second-order poly-
nomial below and above the Balmer jump, as well as a special,
steep polynomial in the region 3650−3730 Å where the Balmer
jump is found to take place.

Because of the large scatter of the log pc values we should
not attach significance to the rapid fluctuations of the data
points, like to the apparent peak near 5800 Å, since these fluc-
tuations are most likely due to the statistical nature of the ex-
traction method used and to ubiquitous contamination from in-
trinsically polarizing spectral lines. Instead we have found it
convenient to do smoothing by choosing second-order polyno-
mials by hand (rather than by automated fits). Three such sets
of curves have been selected and are shown in Fig. 5. The two
outer curves represent what we consider to be the approximate
lower and upper limits to the empirical values of pc, between
which the bulk of the data points fall, while the central curve
is exactly in the middle between the two limit curves and rep-
resents our best estimate for pc. Theoretical modelling should
aim at reproducing the middle curve, within the tolerance re-
gion defined by the outer curves.

4.3. Comparison with theory

At the time when the radiative-transfer theory for the formation
of the continuum polarization was developed (Fluri & Stenflo
1999), there did not exist adequate empirical data with which
the theoretical values could be compared in a meaningful way.
However, now we are in a position to make such a compari-
son. In Fig. 6 the empirically allowed region, defined as the
region between the outer polynomial curves in Fig. 5, is given

Fig. 6. Comparison between observations and theory. The shaded area
represents the empirically allowed region, defined as the region be-
tween the two outer polynomial curves in Fig. 5. The vertical line
marks the wavelength of the Balmer series limit. The dashed curve
has been obtained from the radiative-transfer theory of Fluri & Stenflo
(1999). The thick, solid curve is based on the last scattering approxi-
mation, Eq. (72), with the anisotropy and the opacities given by Figs. 1
and 3. Note in particular the large displacement of the Balmer jump
with respect to the series limit.

as the shaded area. The solution of the polarized transfer equa-
tion with a numerically given model atmosphere, as obtained
by Fluri & Stenflo (1999), is shown by the dashed curve. This
radiative-transfer theory has only been applied above 4000 Å
and therefore does not address the interesting region around
the Balmer jump.

Although the empirical and theoretical curves behave in
similar ways, it is notable that the dashed curve lies system-
atically above the empirically allowed region for wavelengths
below about 5700 Å. Although the source of this discrepancy
cannot be identified at the present time, it is likely to be re-
lated to the choice of model atmosphere. The radiative-transfer
problem needs to be revisited, both to extend the theory to
shorter wavelengths and to fit the empirical data by modifying
the model atmosphere. Our continuum polarization data may
serve as a qualitatively new type of constraint on models of the
solar atmosphere.

For comparison, the thick, solid curve in Fig. 6 represents
the values for pc that we get when we bypass radiative-transfer
theory and use the last scattering approximation as explained
in Sect. 2.5. What is plotted is simply

pc, last scatt. = kG W2, eff . (72)

For the anisotropy factor kG we use the values that were
given in Fig. 1, while for the intrinsic polarizability we use
Eq. (67) with the opacities exactly as given by Fig. 3, but
with the following special considerations for the Balmer opac-
ity σBalmer that contributes to the total, unpolarized opacity σtot

in Eqs. (66) and (67): for the continuum problem we are not
interested in the opacity near the line cores but only in the
wing opacity between the resonances. Therefore we have for
the bound-bound contributions to σBalmer used a smooth lower
envelope to the oscillating radiative absorption curve of Fig. 3



www.manaraa.com

728 J. O. Stenflo: Polarization of the Sun’s continuous spectrum

to filter out the resonant contributions. Since this lower enve-
lope increases steeply as we approach the series limit, overtak-
ing the Lyman scattering contribution and becoming compara-
ble in magnitude to the H− contribution, it governs the behavior
of the effective Balmer jump in Fig. 6.

The shape and position of the Balmer jump in pc, last scatt.

in Fig. 6 appear similar to the Balmer jump in Fig. 1 of the
anisotropy factor kG alone. Since pc, last scatt. represents the prod-
uct of kG and W2, eff , the question arises which of these two
factors is most responsible for the Balmer jump in Fig. 6. To
answer this question we have replaced kG in Eq. (72) with a
straight, slanted line without any Balmer jump. The influence
on the shape and magnitude of the Balmer jump in pc, last scatt.

is insignificant. If we remove the bound-bound Balmer opac-
ity contributions, the Balmer jump appears as a sharp discon-
tinuity exactly at the location of the series limit, regardless
of whether we remove or retain the observed Balmer jump in
Fig. 1 from kG. These tests conclusively show that the Balmer
jump in Fig. 6 comes almost exclusively from a correspond-
ing Balmer jump in W2, eff , while the influence of the Balmer
jump in kG on pc, last scatt. is a second-order effect that plays a
subordinate role.

The similarity of the Balmer jumps in W2, eff and kG points
to a common origin: the wavelength variation of σBalmer/σtot.
This ratio becomes significant already at considerably longer
wavelengths than the formal Balmer limit. Due to the increas-
ing pressure broadening the bound-bound opacity converges to
the bound-free opacity long before the series limit is reached.

It is to be noted that the empirically determined Balmer
jump appears to be more abrupt and discontinuous than can be
accounted for by our simplified theory, as seen from Figs. 5
and 6. The observed shape of the Balmer jump may there-
fore serve as a constraint on refined theories for the pres-
sure broadening of atomic energy levels in stellar atmospheres.
Unfortunately it is difficult to determine the detailed shape of
the Balmer jump from polarimetric observations, since it oc-
curs near the edge of the excluded region in Fig. 5, which is
filled with intrinsically polarizing lines.

4.4. Center-to-limb variation

Through model fitting of the data in the Atlas of the Second
Solar Spectrum we have obtained the function pemp that rep-
resents the continuum polarization at the particular center-to-
limb distance that is defined by µ = 0.1 (where µ is the cosine
of the heliocentric angle). To connect this result to other µ val-
ues we need the help of radiative-transfer calculations that have
established the relative shape of the center-to-limb variations.

According to the radiative-transfer theory of Fluri & Stenflo
(1999) the results of the numerical calculations can be closely
approximated by the following semi-analytical formula for the
continuum polarization pc(µ) as a function of µ and of wave-
length λ:

pc(µ) = qλ fλ(µ), (73)

where qλ is a function of wavelength only, while the µ depen-
dence is contained in

fλ(µ) =
1 − µ2

(µ + mλ) Iλ(µ)/Iλ(1.0)
· (74)

Iλ(µ)/Iλ(1.0) represents the center-to-limb variation of the in-
tensity, for which we will use an anlytical fit to the empirical re-
sults of Neckel (1996), which represents a somewhat more so-
phisticated representation than the one given by Eq. (30). The
parameter mλ has a slow wavelength dependence, which for
the range 4000−8000 Å (for which the radiative-transfer calcu-
lations have been performed) can be represented by the linear
function

mλ = b0 + b1 λ, (75)

with the coefficient values b0 = 0.14 and b1 = −1.6×10−5 (if λ
is given in Å). mλ thus increases from 0.028 at λ = 7000 Å
to 0.076 at 4000 Å. Since we have no guidance from radiative
transfer below 4000 Å, and extrapolation of Eq. (75) to shorter
wavelengths would lead to suspiciously high values for mλ, we
have adopted the value 0.076 as the most reasonable choice for
all wavelengths below 4000 Å. Note, however, that errors in mλ

only affect the center-to-limb variation near the extreme limb,
for µ <∼ 0.1, while the rest of the curve remains robust.

Expressed in terms of the above functions, our empirically
determined continuum polarization pemp = pc(0.1) becomes

pemp = qλ fλ(0.1). (76)

Combined with Eq. (73) we can eliminate qλ and so obtain the
continuum polarization pc for all µ and λ as

pc(µ) = pemp(λ) fλ(µ)/ fλ(0.1). (77)

As our best empirical determination of pemp(λ) we use the cen-
tral polynomial curve from Fig. 5. This curve is plotted in the
two upper panels of Fig. 7, both with a logarithmic and a linear
scale for pc. The abrupt and wavelength-shifted Balmer jump
is conspicuous in these plots. It is also striking from the lin-
ear plot how miniscule the continuum polarization becomes
above 6000 Å. It is remarkable that it could at all be determined
with reasonable error bars in this region.

The two lower panels in Fig. 7 show the center-to-limb vari-
ation of the continuum polarization for λ = 4000 Å, both with a
logarithmic and a linear scale for pc. They illustrate the steep-
ness of the center-to-limb variation, whose shape is given by
function fλ(µ) of Eq. (74).

5. Conclusions

A number of different physical processes contribute to the
formation of the polarized continuum at visible wavelengths.
With the exception of Thomson scattering at free electrons
they all have to do with absorption or scattering by hydro-
gen. The only processes that contribute with polarized pho-
tons are Lyman scattering at hydrogen in its ground state and
Thomson scattering. Lyman scattering is the larger of the two,
although the scattering takes place so far from the Lyman res-
onances. The polarized photons get diluted by the unpolarized
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Fig. 7. Overview of the functional behavior of the empirically determined continuum polarization pc. The two upper panels give the wavelength
variation of pc for µ = 0.1, in logarithmic and linear scales. The curves are the same as the central polynomial curve in Fig. 5. The two bottom
panels give the center-to-limb variation of pc for λ = 4000 Å, in logarithmic and linear scales.

photons from the other opacity sources. The dominating opac-
ity is from H−, but radiative absorption in the bound-bound
and bound-free Balmer transitions becomes important as we
approach the Balmer series limit. The Balmer jump that results
from these Balmer absorptions is shifted from the series limit
towards longer wavelengths due to pressure broadening of the
high atomic levels from the statistical Stark effect. Our simpli-
fied treatment of this pressure broadening can approximately
reproduce the shift but not the shape (abruptness) of the ob-
served Balmer jump.

The polarization amplitude scales with the anisotropy of
the radiation field. This anisotropy increases rather steeply as
we go towards shorter wavelengths, and it exhibits a Balmer
jump that is also shifted to longer wavelengths with respect
to the series limit. The Balmer jump in the continuum polar-
ization pc is however determined almost exclusively by the
Balmer jump in the effective, intrinsic polarizability W2, eff , not
by the Balmer jump in the anisotropy factor (kG). The Balmer
jump in W2, eff occurs when the bound-bound radiative absorp-
tion in the Balmer lines overtakes the Lyman scattering opacity
and starts to become comparable to the H− opacity. The de-
tailed modelling of the effective Balmer jump will remain a
challenge for future pressure broadening theories and of gen-
eral interest for the physics of stellar atmospheres.

The empirical value of the continuum polarization and its
wavelength variation over the range 3161−6995 Å could be de-
termined for disk position µ = 0.1 from Gandorfer’s three vol-
umes of the Second Solar Spectrum. Since the zero point of the
polarization scale is basically unknown in these observations,

it had to be determined together with the continuum polariza-
tion via a model for the behavior of the depolarizing lines in
the Second Solar Spectrum. Parameter studies show that the
results for the continuum polarization are not very sensitive to
the details of this model. Still we have explored how the model
uncertainties affect the results and added this influence to the
general noise to obtain an estimate of the accuracy (as a func-
tion of wavelength) with which the continuum polarization pc

has been determined. It is surprising that it is possible to de-
termine pc rather well even in the red part of the spectrum,
where the polarization amplitude is as low as 10−4. However,
the range between 3730 and 4090 Å could not be used be-
cause it is dominated by strong line polarization, in particular
from the CN molecule, from the Ca  K and H lines, and from
strongly polarizing lines of Fe  and Sr .

The empirically determined pc is found to lie systemati-
cally lower than the values previously obtained from radiative-
transfer modelling (for λ > 4000 Å). The radiative-transfer
theory needs to be revisited to identify the origin of this dis-
crepancy. Potentially the observed continuum polarization may
be used to constrain the model atmospheres, in a different way
as compared with the constraints imposed by spectral intensity
data.

The main strength of the present data set is the large wave-
length range over which the wavelength variation of pc could
be determined. The main weakness is the considerable range
of uncertainty in the values, much due to the statistical nature
of the extraction procedure and the ubiquitous contamination
from intrinsic line polarization. Therefore the constraints on
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model atmospheres that the current data set provides are crude
and need to be much improved upon in future work.

Although current radiative-transfer modelling thus fails to
properly reproduce the polarization amplitudes, it is likely that
the relative shape of the center-to-limb variation is predicted
well by such modelling. If we use the so predicted relative
shape functions and scale them with the observed values of the
continuum polarization for µ = 0.1, we obtain a semi-empirical
representation of pc that covers all wavelengths and µ values.
This is of great value to have as a tool in the reduction of any
polarimetric observations of the Second Solar Spectrum, since
the absolute position of the zero point of the polarization scale
cannot be determined in the observations with a precision that
can come close to the relative polarimetric precision. We are
now in a position to overcome this problem. With our new
tool we may fit the observed continuum to the semi-empirical
values for pc at the respective wavelength and µ position and
thereby be able to determine the absolute polarization scale
with much improved precision.

Acknowledgements. I am grateful to Hans Martin Schmid for il-
luminating discussions, and to Achim Gandorfer for providing me
with the complete data set for the three volumes of his Atlas of
the Second Solar Spectrum. The observations for this atlas were
done with the ZIMPOL polarimetric equipment at IRSOL (Istituto
Ricerche Solari Locarno) for Volumes I and II, and at the National
Solar Observatory/Kitt Peak for Volume III. The engineering group at
ETH Zurich (Peter Povel, Peter Steiner, Urs Egger, Frieder Aebersold,
Stefan Hagenbuch) built the ZIMPOL system and provided the tech-
nical support, financially supported by the Swiss Nationalfonds,
grant No. 20-64945.01. IRSOL has been financially supported by
the canton of Ticino, the city of Locarno, ETH Zurich, and the
Swiss Nationalfonds. NSO is one of the National Optical Astronomy
Observatories, which are operated by the Association of Universities
for Research in Astronomy, Inc. (AURA) under cooperative agree-
ment with the National Science Foundation. I also like to thank the
anonymous referee for thoughtful suggestions.

References

Baschek, B., & Scholz, M. 1982, in Vol. 2 on Astronomy and
Astrophysics, Subvolume b on Stars and Star Clusters, ed. K.
Schaifers, & H. H. Voigt, Landolt-Börnstein Numerical Data and
Functional Relationships in Science and Technology (Springer),
104

Berdyugina, S. V., Stenflo, J. O., & Gandorfer, A. 2002, A&A, 388,
1062

Bommier, V., & Stenflo, J. O. 1999, A&A, 350, 327
Chandrasekhar, S., & Breen, F. H. 1946, ApJ, 104, 430
Débarbat, S., Dumont, S., & Pecker, J.-C. 1970, A&A, 8, 231
Dumont, S., & Pecker, J.-C. 1971, A&A, 10, 118
Fluri, D. M., & Stenflo, J. O. 1999, A&A, 341, 902
Fluri, D. M., & Stenflo, J. O. 2003, A&A, 398, 763
Gandorfer, A. 2000, The Second Solar Spectrum, Vol. I: 4625 Å

to 6995 Å (Zurich: VdF)
Gandorfer, A. 2002, The Second Solar Spectrum, Vol. II: 3910 Å

to 4630 Å (Zurich: VdF)
Gandorfer, A. 2004, The Second Solar Spectrum, Vol. III: 3161 Å

to 3913 Å, in preparation
Green, L. C., Rush, P. P., & Chandler, C. D. 1957, ApJS, 3, 37
Inglis, D. R., & Teller, E. 1939, ApJ, 90, 439
Ivanov, V. V. 1991, in Stellar Atmospheres: Beyond Classical Models,

ed. L. Crivellari, I. Hubeny, & D. G. Hummer, Proc. NATO
(Dordrecht: Kluwer), 81

Karzas, W. J., & Latter, R. 1961, ApJS, 6, 167
Kramers, H. A. 1923, Phil. Mag., 46, 836
Leroy, J. L. 1972, A&A, 19, 287
Leroy, J. L. 1977, in Measurements and Interpretation of Polarization

Arising in the Solar Chromosphere and Corona, ed. J. O. Stenflo,
Rep. Obs. Lund No. 12, Sweden, 161

Menzel, D. H., & Pekeris, C. L. 1935, MNRAS, 96, 77
Mickey, D. L., & Orral, F. Q. 1974, A&A, 31, 179
Neckel, H. 1996, Sol. Phys., 167, 9
Pierce, K. 2000, in Allen’s Astrophysical Quantities, 4th ed., ed. A. N.

Cox (Springer), 355
Povel, H. 1995, Optical Engineering, 34, 1870
Stenflo, J. O. 1982, Sol. Phys., 80, 209
Stenflo, J. O. 1994, Solar Magnetic Fields – Polarized Radiation

Diagnostics (Dordrecht: Kluwer)
Stenflo, J. O. 1997, A&A, 324, 344
Stenflo, J. O., & Keller, C. U. 1997, A&A 321, 927
Stenflo, J. O., Twerenbold, D., & Harvey, J. W. 1983a, A&AS, 52, 161
Stenflo, J. O., Twerenbold, D., Harvey, J. W., & Brault, J. W. 1983b,

A&AS, 54, 505
Stenflo, J. O., Keller, C. U., & Gandorfer, A. 1998, A&A, 329, 319
Unsöld, A. 1955, Physik der Sternatmosphären, 2nd ed. (Springer)
Wiehr, E. 1975, A&A, 38, 303
Wiese, W. L., Smith, M. W., & Glennon, B. M. 1966, NSRDS-NBS 4,

Ref. Data Ser., Atomic Transition Probabilities, Vol. I


